
Package ‘epsdice’ — a scalable dice font

2007/02/15 – Version 2.1

Thomas Heim

(thomas.heim@unibas.ch)

1 Introduction

Dice fonts are already available in metafont format. (I should know, I
wrote one myself: dice3d.mf.) For some applications it seems preferable,
however, to have the fonts in scalable form. The package epsdice fills this
gap.

epsdice.sty provides a single command, \epsdice{#1}, taking one
mandatory argument, an integer from 1 to 6, and recognising one optional
argument, namely [black] for a black die with white dots.1 The default
behavior (i.e., with no optional argument or with any optional argument

other than [black]) results in a white die with black dots.
The mandatory argument may also be the value of a counter. Thus

automatic representation of (generated or input) data is possible as well. Of
course, values outside the range 1–6 will not be represented as die faces.

Depending on the value of the argument, \epsdice includes the appro-
priately clipped region from a file containing simple drawings of die faces.
The drawings scale with the current font because the height of the included
graphics file is set in terms of ‘ex’ units.

2 Requirements and limitations

epsdice relies on the graphicx package to include the drawings. It also
uses the ifthen package to validate the arguments (error checking).

The package has been tested with two widely used package drivers for
graphicx: [dvips] and [pdftex]. By default, the command \epsdice in-

1Thanks to Chrisoph Zurnieden for suggesting the extension with reversed colors, and

for adjusting the drawings to this purpose.

1



cludes epsdice.eps under LATEX2ε, and epsdice.pdf under pdfLATEX, re-
spectively2 (unless your graphics.cfg file specifies non-standard settings).

Clipping is supported only in pdfTEX versions ≥ 0.14. You will also need
an up-to-date version of pdftex.def: Clipping is not supported in versions
v0.03c [2000/09/04] or earlier. If your pdfTEX is up-to-date but you still
receive error messages about clipping not being supported, get the latest
pdftex.def here:

http://www.tug.org/applications/pdftex/pdftex.def

I tested the package successfully with pdfTEX 0.14e and pdftex.def v0.03f
[2000/11/10].

3 Configuring this package

To finish the installation of the package, simply move the following files
somewhere in your “local texmf tree”:

epsdice.sty, epsdice.cfg, dice.eps, dice.pdf

e.g. to a new subdirectory /tex/latex/epsdice/. Refresh the TEX-system’s
file name database, and that’s it, you’re all set! The remainder of this section
applies only if you want to change the default settings.

The command \epsdice works by including an external file, so this
file must be found by LATEX2ε. The package comes with a configuration
file epsdice.cfg containing the file name in the variable \dicefile. By
default, this variable points to the file dice.{eps|pdf} (without file name
extension). If you don’t like my drawings and would like to “roll your own”,
a look at section 5 may give some hints. It contains the same PostScript
code as dice.eps, with some comments about what’s going on. Conversion
to pdf format has been accomplished with epstopdf (using GhostScript),
see pdfTEX’s web page.

If you intend to keep the external file with the dice drawings in a different
place or if you want to use your own version you have to edit the configu-
ration file epsdice.cfg accordingly, by adding the path to the file name,
or by changing the file name in the variable \dicefile. If a configuration
file does not exist, the external file is assumed to be located in the present
working directory.

2Many thanks to Rolf Niepraschk for his help with the latter!

2



4 Examples

Die faces in an 11pt environment: The pictures fit into the surrounding text,
as in . The code used to set these die faces was:

\epsdice{1} \epsdice[black]{2} \epsdice[black]{3}

\epsdice[red]{4} \epsdice[black]{5} \epsdice[white]{6}

The only effective option to the command \epsdice is [black]. Anything
else results in the default behavior with white background.

Here is some \Large text. The die pictures scale accord-
ingly:3 . See?

Finally, note that the package works with standard counters, too: Here’s
the result of \epsdice{\value{section}} .

5 Drawing dice in PostScript

Something as simple as a “square with dots on it” is rather straightforward
to draw in PostScript. The first line

%!PS-Adobe-2.0 EPSF-1.2

is just a standard header. Next comes the bounding box: Each face measures
32 × 32 pt, centered in a 43 × 43 pt box. For six faces in a row, this gives
a bounding box of 258 × 43 pt. We have two rows of dice, the lower row
containing the white dice with black dots, the upper one the black dice with
white dots. So the total bounding box is 258× 86 pt. The background color
will be stored in the variable bw = 0 or 1.

%%BoundingBox: 0 0 258 86

The /frame macro defines a simple box with rounded corners. It takes one
argument, the face index n, and calculates a corresponding x-offset: xoff =
43(n − 1). The point (xoff , yoff) then becomes the origin of the coordinate
system for this particular face. This macro uses the variable bw to calculate
the vertical offset yoff = 43bw. The frame consists of straight lines separated
by 5 pt from the outer margin, and of four quarter circles with radius r

(r = 5 pt for black on white and r = 6 pt for white on black) centered at
(10, 10), (32, 10), (10, 32), and (32, 32).

3. . . as they do in footnotes, , like this.

3



/frame {

/n exch def % take n off the stack, store it

/xoffset n 1 sub 43 mul def % xoffset = 43*(n-1)

gsave % save the graphics state

newpath % start a new path

xoffset yoffset translate % move origin to (xoffset,yoffset)

32 5 bw sub moveto % go to (32,5) or (32,4) in this system

32 10 r -90 0 arc % SE quarter circle around (32,10)

37 bw add 32 lineto % right line

32 32 r 0 90 arc % NE quarter circle around (32,32)

10 37 bw add lineto % top line

10 32 r 90 180 arc % NW quarter circle around (10,32)

5 bw add 10 lineto % left line

10 10 r 180 270 arc % SW quarter circle around (10,10)

closepath % bottom line (closes the path)

bw 0 eq { stroke } % either paint (lower row, bw=0)

{ fill } ifelse % or fill (upper row, bw=1) the path

grestore % restore graphics state

} def

The dot positions are labelled within a face by (x, y)-coordinates running
from (1, 1) for bottom left to (3, 3) for top right. The dot itself is a filled
circle with radius 3.5 pt. Change the dots’ positions within the frame, or
their radius, as you like. The /dot macro takes three arguments off the
stack: (i) the face index, to determine the x-offset, (ii) the x-coordinate (1,
2, or 3) on the face, and (iii) the y-coordinate (1, 2, or 3) on the face.

/dot {

/y exch def % take y-coordinate off the stack

/x exch def % take x-coordinate off the stack

/n exch def % take face index n off the stack

/xoffset n 1 sub 43 mul def % xoffset = 43*(n-1)

gsave % save the graphics state

newpath % start a new path

xoffset yoffset translate % move origin to (xoffset,yoffset)

x 8 mul 5 add % the dot’s x-position: 8*x+5

y 8 mul 5 add % the dot’s y-position: 8*y+5

3.5 0 360 arc % a circle with radius 3.5 pt

closepath % close the circle

bw setgray % set the appropriate color

fill % fill the circle

4



grestore % restore graphics state

} def

Now choose a linewidth (2 pt)

2 setlinewidth

and loop over the background color (and hence the rows) from 0 to 1. The
color counter is stored in bw and used to determine yoff as well as the radius
of the circles, r = 5 + bw pt.

0 1 1 { % set up loop from 0 to 1

/bw exch def % store loop index in bw

/yoffset bw 43 mul def % yoffset = 43*bw

/r 5 bw add def % radius r = 5+bw

0 setgray % set color to black for all frames

All we have to do now is draw the six faces

1 1 6 { frame } for % call /frame macro for n=1..6

and fill in the appropriate dots. The bottom left and top right dots appear
on faces 2, 3, 4, 5, and 6. Thus there is an outer loop from 2 to 6 in steps of
1. For each of these face indices, we call the dot macro with (x, y)-argument
equal to (1, 1) and (3, 3). This can be achieved with an inner loop running
from 1 to 3 in steps of 2. Because the x- and y-coordinates coincide for these
particular points, we obtain them by duplicating the inner loop index. The
/dot macro gobbles not only the x- and y-coordinates but the face index as
well. In order to draw two dots on the same face, we thus have to duplicate
the outer loop index, too.

2 1 6 { % start loop 2 to 6 in steps of 1

dup % duplicate index (two dots on each face)

1 2 3 { % start loop 1 to 3 in steps of 2

dup % duplicate loop index -> 1 1 and 3 3

dot % call /dot macro, using three arguments

} for % inner loop (dot positions)

} for % outer loop (face index)

The center dot appears on faces 1, 3, and 5. We get it in a simple loop from
1 to 5 in steps of 2, calling the /dot macro for each index together with the
coordinate set (2, 2) corresponding to the center.

1 2 5 { 2 2 dot } for % (2,2) dot on 1, 3, 5

5



The top left and the bottom right dots appear on faces 4, 5, and 6. Again,
in order to draw two dots on each face, we have to duplicate the loop index,
i.e., the face index:

4 1 6 { % start loop 4 to 6 in steps of 1

dup % duplicate index (two dots on each face)

1 3 dot % call /dot macro for (1,3) dot on this face

3 1 dot % call /dot macro for (3,1) dot on this face

} for % loop over face index

Finally, on face 6 we have two dots in positions (1, 2) and (3, 2). We can use
a loop, but then we have to swap the loop index, i.e., the dot’s x-coordinate,
with the (constant) face index 6 inside the loop.

1 2 3 { % start loop 1 to 3 in steps of 2

6 exch % swap loop index and constant face index

2 % push constant y-coordinate on stack

dot % call /dot macro for (x,2) dot on face 6

} for % loop over x-coordinates 1 and 3

And this closes the loop over background colors:

} for % loop over bw 0 and 1

That’s it!

%%EOF

6 Errors

Of course it doesn’t make sense to ask for die faces with arguments other
than 1, 2, 3, 4, 5, or 6. The package generates error messages and simply
prints the offending argument in the TEX output.

6


